(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
plus(n, s(m)) →+ s(plus(n, m))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [m / s(m)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)